The Residual Bi-2212 Intergrowth Distribution in HighJ_c Tapes and its Origins in the insitu Conversion Process Terry Holesinger

LANL Collaborators

Jack Kennison

Jeff Willis

Milena Archuleta (student)

Only the Bi-2223 grain next to the silver sheath was free or nearly free of Bi-2212 intergrowths. (FY2002)

Single Bi-2212

intergrowth

 Spatially non-uniform distribution of intergrowths.

• AMSC production tape with AHT (post anneal) $I_c = 163 \text{ A}, J_c(S.F., 77K) = 47.7 \text{ kA/cm}^2$

Double Bi-2212 intergrowth

Bi-2234/Bi-2212 intergrowths

SEM and STEM reveal significant amounts of residual Bi-2212 in the very high-J_c sample (27 kA/cm², 77K, 0.1 T)

 STEM imaging and mapping confirm the SEM backscattered images that show Bi-2212 distributed throughout the filament.

Significant amounts of Bi-2212 left in fully processed tapes.

AMSC multifilamentary tape processed at UW with OP post anneal with $J_c(0.1T, 77K) = 27 \text{ kA/cm}^2$

Sr K

Ca K

Cu K

Bi L

Pb L

Although OP processing has pushed J_c above 30 kA/cm² (0.1T, 77K), a significant population of Bi-2212 intergrowths remains.

 The grain next to the silver sheath is free of Bi-2212 intergrowths; grains further into the Bi-2223 filament contain Bi-2212 in variable amounts and shapes.

Crushed SQUID magnetization test supports this microstructural shell model of the Bi-2223 filaments

- Shell of well-formed Bi-2223 coats the inside of the silver sheath.
- Bi-2212 intergrowths and small grains can be found everywhere else in the filament.
- Material segregation from conversion process leaves or traps "unreacted" material in the filament centers.

UW SQUID test

"Excess" material that could be used to convert residual Bi-2212 into Bi-2223 is trapped in the filament centers after full processing.

 Residual phases of the 14-24 AEC, 2:1 AEC, and the Pbrich 3221 phase in the middle of the filament.

AMSC multifilamentary tape processed at UW with an OP Post Anneal $J_c(0.1T, 77K) = 27 \text{ kA/cm}^2$

The 2212 to 2223 conversion process produces compositional inhomogenities across the filaments right from its early stages

Preferential growth from the silver combined with anisotropic growth rates define a growth front which rapidly decays into a jumble of Bi-2223 grains protruding into the filament center.

Bi-2212 trapping by growing Bi-2223 grains

AMSC Bi-2223 tape after 6 hours at 825°C in 8%O₂.

AMSC Bi-2223 tape quenched in oil after 640 min at 827°C in 8% O_2 .

The distribution of residual Bi-2212 intergrowths within the grains starts with the Bi-2223 precipitation process from the partial melt.

Intergrowths in the Bi-2223 grains are continuous and their density is directly proportional to the distance from the liquid phase.

The conversion process ultimately determines the overall distribution of residual Bi-2212

in fully processed tapes.

